翻訳と辞書
Words near each other
・ Ehrgeiz
・ Ehrgeiz (anime)
・ Ehrgott, Forbriger & Co.
・ Ehrhardt
・ Ehrhardt (automobile)
・ Ehrhardt (surname)
・ Ehrhardt (typeface)
・ Ehrhardt 7.5 cm Model 1901
・ Ehrhardt 7.5 cm Model 1904
・ Ehrhardt E-V/4
・ Ehrhardt Heller
・ Ehrhardt Koch
・ Ehrhardt Post
・ Ehrhardt, South Carolina
・ Ehrhardt-Szawe
Ehrhart polynomial
・ Ehrhart's Mill Historic District
・ Ehrharta
・ Ehrharta calycina
・ Ehrharta erecta
・ Ehrich
・ Ehrich & Graetz
・ Ehrichspitze
・ Ehrick K. Rossiter
・ Ehrick Rossiter
・ Ehringsdorf skull
・ Ehringshausen
・ Ehrler
・ Ehrlich
・ Ehrlich (crater)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ehrhart polynomial : ウィキペディア英語版
Ehrhart polynomial
In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane.
These polynomials are named after Eugène Ehrhart who studied them in the 1960s.
==Definition==
Informally, if ''P'' is a polytope, and ''tP'' is the polytope formed by expanding ''P'' by a factor of ''t'' in each dimension, then ''L''(''P'', ''t'') is the number of integer lattice points in ''tP''.
More formally, consider a lattice ''L'' in Euclidean space R''n'' and a ''d''-dimensional polytope ''P'' in R''n'' with the property that all vertices of the polytope are points of the lattice. (A common example is ''L'' = Z''n'' and a polytope for which all vertices have integer coordinates.) For any positive integer ''t'', let ''tP'' be the ''t''-fold dilation of ''P'' (the polytope formed by multiplying each vertex coordinate, in a basis for the lattice, by a factor of ''t''), and let
:L(P,t) = \#(tP \cap L)\,
be the number of lattice points contained in the polytope ''tP''. Ehrhart showed in 1962 that ''L'' is a rational polynomial of degree ''d'' in ''t'', i.e. there exist rational numbers ''a''0,...,''a''''d'' such that:
:L(P, t) = a_d t^d + a_ t^ + ... + a_0
for all positive integers ''t''.
The Ehrhart polynomial of the interior of a closed convex polytope ''P'' can be computed as:
: L(\text(P), t) = (-1)^d L(P, -t),
where ''d'' is the dimension of ''P''. This result is known as Ehrhart-Macdonald reciprocity.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ehrhart polynomial」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.